Salary Prediction Model using Machine Learning
Machine Learning courses with 100+ Real-time projects Start Now!!
Program 1
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model df=pd.read_excel("D://scikit_data/newemp/employee.xlsx") df=df.rename(columns={'test_score(out of 10)':'TestScore'}) df=df.rename(columns={'interview_score(out of 10)':'InteviewScore'}) df=df.rename(columns={'salary($)':'Salary'}) my_dict={'zero':0,'one':1,'two':2,'three':3,'four':4,'five':5,'six':6,'seven':7,'eight':8,'nine':9,'ten':10} df['experience']=df['experience'].map(my_dict) df.experience=df.experience.fillna(2) df.TestScore=df.TestScore.fillna(df.TestScore.median()) # print(df) model=linear_model.LinearRegression() model.fit(df.drop('Salary',axis='columns'),df.Salary) # print(model) exp=float(input("Enter Experience of Employee")) test=float(input("Enter Test Score of Employee")) inter=float(input("Enter Interview Score of Employee")) print("Prediciated Salary: ",model.predict([[exp,test,inter]])) # print(model.coef_) # print(model.intercept_) # salary=39292.171189979104 +exp*2135.12526096+test*-312.7348643+inter*2204.85386221 # print("Fourmla Salary: ",salary)
We work very hard to provide you quality material
Could you take 15 seconds and share your happy experience on Google