Marks Prediction of Students in Machine Learning

Free Machine Learning courses with 130+ real-time projects Start Now!!

Program 1

# Machine Learning model for student marks predication
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
from sklearn import linear_model
mydf=pd.read_excel("D://MLFile/result.xlsx")
mymodel=linear_model.LinearRegression()
mymodel.fit(mydf.drop('marks',axis='columns'),mydf.marks)  # Trained Data set
h=float(input("Enter hours for Marks Predication: "))

alpha=mymodel.intercept_
beta=mymodel.coef_
y=alpha+beta*h

os.system('cls')

print(mydf)
print("Predicated Marks :",mymodel.predict([[h]]))
print("Predicated Marks as per Fourmla :",y)
mynewdf=pd.read_excel("D://MLFile/nohours.xlsx")
mymrk=mymodel.predict((mynewdf))
print(mymrk)
mynewdf['Marks']=mymrk
print(mynewdf)
mynewdf.to_excel("D://MLFile/newResult.xlsx")
print("--------Predication done successfully-------------------")

 

Did you like this article? If Yes, please give DataFlair 5 Stars on Google

courses

DataFlair Team

DataFlair Team provides high-impact content on programming, Java, Python, C++, DSA, AI, ML, data Science, Android, Flutter, MERN, Web Development, and technology. We make complex concepts easy to grasp, helping learners of all levels succeed in their tech careers.

Leave a Reply

Your email address will not be published. Required fields are marked *