Insurance Price Prediction using Machine Learning
Free Machine Learning courses with 130+ real-time projects Start Now!!
Program 1
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score df=pd.read_csv("D://scikit_data/insurancedata/insurance.csv") map_dict={'female':0,'male':1} df['sex']=df['sex'].map(map_dict) map_dict={'southwest':0,'southeast':1,'northwest':2,'northeast':3} df['region']=df['region'].map(map_dict) map_dict={'yes':1,'no':0} df['smoker']=df['smoker'].map(map_dict) # print(df) # print(df.isnull().sum()) x=df.drop('charges',axis='columns') # Independed Variables y=df.charges # Depended Variables x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0) # x_train---> Training data set for Independed variable # y_train---> Training data set for depended variable # x_test---> Testing data set for Independed variable # y_test---> Testing data set for depended variable model=linear_model.LinearRegression() model.fit(x_train,y_train) # Predication by training dataset y_pred=model.predict(x_train) #print(y_pred) plt.scatter(y_train,y_pred,color='red') plt.xlabel("Actual Price") plt.ylabel("Predicated Price") plt.show() print("R2 Score for Training data:",r2_score(y_train,y_pred)) # Predication by test dataset y_pred=model.predict(x_test) #print(y_pred) plt.scatter(y_test,y_pred,color='blue',marker='+') plt.xlabel("Actual Price") plt.ylabel("Predicated Price") plt.show() print("R2 Score for Testing data:",r2_score(y_test,y_pred)) # print(model) # print("Coeficent values") # print(model.coef_) # print("Intercept values") # print(model.intercept_) # print(x) # print(y)
Did you know we work 24x7 to provide you best tutorials
Please encourage us - write a review on Google