How to Save Trained Model using Pickle in Machine Learning
Free Machine Learning courses with 130+ real-time projects Start Now!!
Program 1
import pandas as pd import numpy as np from sklearn import linear_model import pickle df=pd.read_excel("D://scikit_data/emp/employee.xlsx") print(df) model=linear_model.LinearRegression() model.fit(df.drop('salary',axis='columns'),df.salary) print(model) print("Predication with Model: ",model.predict([[7]])) print("Coficient with Model: ",model.coef_) print("Intercepet with Model: ",model.intercept_) myfile1=open("pickle_model","wb") pickle.dump(model,myfile1) myfile1.close() print("----------Model Dump in file--------------") print("Load Model") myfile2=open("pickle_model","rb") mymodel=pickle.load(myfile2) print(mymodel) print("Predication with my model: ",model.predict([[7]])) print("Coficient with my model: ",model.coef_) print("Intercepet with my model: ",model.intercept_) myfile2.close()
Did you know we work 24x7 to provide you best tutorials
Please encourage us - write a review on Google