Home Price Prediction with Multiple Variable in Machine Learning
Free Machine Learning courses with 130+ real-time projects Start Now!!
Program 1
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model mydf=pd.read_csv("D://scikit_data/home/homeprices.csv") mydf.bedrooms=mydf.bedrooms.fillna(mydf.bedrooms.median()) print(mydf) model=linear_model.LinearRegression() # print(model) model.fit(mydf.drop('price',axis='columns'),mydf.price) print(model) sq=int(input("Enter area: ")) bdr=int(input("Enter No of Bedrooms: ")) age=int(input("Enter age of Home(How old is Home) : ")) print("Prediciated Price",model.predict([[sq,bdr,age]])) print(model.intercept_) print(model.coef_) price=221323.0018654043 + 112.06244194*sq+23388.88007794*bdr+-3231.71790863*age print("Formula Price",price)
If you are Happy with DataFlair, do not forget to make us happy with your positive feedback on Google