# Stock Price Prediction – Machine Learning Project in Python

Machine learning has significant applications in the stock price prediction. In this machine learning project, we will be talking about predicting the returns on stocks. This is a very complex task and has uncertainties. We will develop this project into two parts:

1. First, we will learn how to predict stock price using the LSTM neural network.
2. Then we will build a dashboard using Plotly dash for stock analysis.

Join DataFlair on Telegram!!

## Stock Price Prediction Project

#### Datasets

1. To build the stock price prediction model, we will use the NSE TATA GLOBAL dataset. This is a dataset of Tata Beverages from Tata Global Beverages Limited, National Stock Exchange of India: Tata Global Dataset
2. To develop the dashboard for stock analysis we will use another stock dataset with multiple stocks like Apple, Microsoft, Facebook: Stocks Dataset

### Stock price prediction using LSTM

1. Imports:

```import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10
from keras.models import Sequential
from keras.layers import LSTM,Dropout,Dense

from sklearn.preprocessing import MinMaxScaler
```

```df=pd.read_csv("NSE-TATA.csv")
```

3. Analyze the closing prices from dataframe:

```df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d")
df.index=df['Date']

plt.figure(figsize=(16,8))
plt.plot(df["Close"],label='Close Price history')
```

4. Sort the dataset on date time and filter “Date” and “Close” columns:

```data=df.sort_index(ascending=True,axis=0)
new_dataset=pd.DataFrame(index=range(0,len(df)),columns=['Date','Close'])

for i in range(0,len(data)):
new_dataset["Date"][i]=data['Date'][i]
new_dataset["Close"][i]=data["Close"][i]
```

5. Normalize the new filtered dataset:

```scaler=MinMaxScaler(feature_range=(0,1))
final_dataset=new_dataset.values

train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]

new_dataset.index=new_dataset.Date
new_dataset.drop("Date",axis=1,inplace=True)
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(final_dataset)

x_train_data,y_train_data=[],[]

for i in range(60,len(train_data)):
x_train_data.append(scaled_data[i-60:i,0])
y_train_data.append(scaled_data[i,0])

x_train_data,y_train_data=np.array(x_train_data),np.array(y_train_data)

x_train_data=np.reshape(x_train_data,(x_train_data.shape[0],x_train_data.shape[1],1))
```

6. Build and train the LSTM model:

```lstm_model=Sequential()

inputs_data=new_dataset[len(new_dataset)-len(valid_data)-60:].values
inputs_data=inputs_data.reshape(-1,1)
inputs_data=scaler.transform(inputs_data)

lstm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2)

```

7. Take a sample of a dataset to make stock price predictions using the LSTM model:

```X_test=[]
for i in range(60,inputs_data.shape[0]):
X_test.append(inputs_data[i-60:i,0])
X_test=np.array(X_test)

X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
predicted_closing_price=lstm_model.predict(X_test)
predicted_closing_price=scaler.inverse_transform(predicted_closing_price)
```

8. Save the LSTM model:

`lstm_model.save("saved_model.h5")`

9. Visualize the predicted stock costs with actual stock costs:

```train_data=new_dataset[:987]
valid_data=new_dataset[987:]
valid_data['Predictions']=predicted_closing_price
plt.plot(train_data["Close"])
plt.plot(valid_data[['Close',"Predictions"]])
```

You can observe that LSTM has predicted stocks almost similar to actual stocks.

## Build the dashboard using Plotly dash

In this section, we will build a dashboard to analyze stocks. Dash is a python framework that provides an abstraction over flask and react.js to build analytical web applications.
Before moving ahead, you need to install dash. Run the below command in the terminal.

```pip3 install dash
pip3 install dash-html-components
pip3 install dash-core-components
```

Now make a new python file stock_app.py and paste the below script:

```import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output
from sklearn.preprocessing import MinMaxScaler
import numpy as np

app = dash.Dash()
server = app.server

scaler=MinMaxScaler(feature_range=(0,1))

df_nse["Date"]=pd.to_datetime(df_nse.Date,format="%Y-%m-%d")
df_nse.index=df_nse['Date']

data=df_nse.sort_index(ascending=True,axis=0)
new_data=pd.DataFrame(index=range(0,len(df_nse)),columns=['Date','Close'])

for i in range(0,len(data)):
new_data["Date"][i]=data['Date'][i]
new_data["Close"][i]=data["Close"][i]

new_data.index=new_data.Date
new_data.drop("Date",axis=1,inplace=True)

dataset=new_data.values

train=dataset[0:987,:]
valid=dataset[987:,:]

scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(dataset)

x_train,y_train=[],[]

for i in range(60,len(train)):
x_train.append(scaled_data[i-60:i,0])
y_train.append(scaled_data[i,0])

x_train,y_train=np.array(x_train),np.array(y_train)

x_train=np.reshape(x_train,(x_train.shape[0],x_train.shape[1],1))

inputs=new_data[len(new_data)-len(valid)-60:].values
inputs=inputs.reshape(-1,1)
inputs=scaler.transform(inputs)

X_test=[]
for i in range(60,inputs.shape[0]):
X_test.append(inputs[i-60:i,0])
X_test=np.array(X_test)

X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
closing_price=model.predict(X_test)
closing_price=scaler.inverse_transform(closing_price)

train=new_data[:987]
valid=new_data[987:]
valid['Predictions']=closing_price

app.layout = html.Div([

html.H1("Stock Price Analysis Dashboard", style={"textAlign": "center"}),

dcc.Tabs(id="tabs", children=[

dcc.Tab(label='NSE-TATAGLOBAL Stock Data',children=[
html.Div([
html.H2("Actual closing price",style={"textAlign": "center"}),
dcc.Graph(
id="Actual Data",
figure={
"data":[
go.Scatter(
x=train.index,
y=valid["Close"],
mode='markers'
)

],
"layout":go.Layout(
title='scatter plot',
xaxis={'title':'Date'},
yaxis={'title':'Closing Rate'}
)
}

),
html.H2("LSTM Predicted closing price",style={"textAlign": "center"}),
dcc.Graph(
id="Predicted Data",
figure={
"data":[
go.Scatter(
x=valid.index,
y=valid["Predictions"],
mode='markers'
)

],
"layout":go.Layout(
title='scatter plot',
xaxis={'title':'Date'},
yaxis={'title':'Closing Rate'}
)
}

)
])

]),
html.Div([
style={'textAlign': 'center'}),

dcc.Dropdown(id='my-dropdown',
options=[{'label': 'Tesla', 'value': 'TSLA'},
{'label': 'Apple','value': 'AAPL'},
{'label': 'Microsoft','value': 'MSFT'}],
multi=True,value=['FB'],
style={"display": "block", "margin-left": "auto",
"margin-right": "auto", "width": "60%"}),
dcc.Graph(id='highlow'),

dcc.Dropdown(id='my-dropdown2',
options=[{'label': 'Tesla', 'value': 'TSLA'},
{'label': 'Apple','value': 'AAPL'},
{'label': 'Microsoft','value': 'MSFT'}],
multi=True,value=['FB'],
style={"display": "block", "margin-left": "auto",
"margin-right": "auto", "width": "60%"}),
dcc.Graph(id='volume')
], className="container"),
])

])
])

@app.callback(Output('highlow', 'figure'),
[Input('my-dropdown', 'value')])
def update_graph(selected_dropdown):
dropdown = {"TSLA": "Tesla","AAPL": "Apple","FB": "Facebook","MSFT": "Microsoft",}
trace1 = []
trace2 = []
for stock in selected_dropdown:
trace1.append(
go.Scatter(x=df[df["Stock"] == stock]["Date"],
y=df[df["Stock"] == stock]["High"],
mode='lines', opacity=0.7,
name=f'High {dropdown[stock]}',textposition='bottom center'))
trace2.append(
go.Scatter(x=df[df["Stock"] == stock]["Date"],
y=df[df["Stock"] == stock]["Low"],
mode='lines', opacity=0.6,
name=f'Low {dropdown[stock]}',textposition='bottom center'))
traces = [trace1, trace2]
data = [val for sublist in traces for val in sublist]
figure = {'data': data,
'layout': go.Layout(colorway=["#5E0DAC", '#FF4F00', '#375CB1',
'#FF7400', '#FFF400', '#FF0056'],
height=600,
title=f"High and Low Prices for {', '.join(str(dropdown[i]) for i in selected_dropdown)} Over Time",
xaxis={"title":"Date",
'rangeselector': {'buttons': list([{'count': 1, 'label': '1M',
'step': 'month',
'stepmode': 'backward'},
{'count': 6, 'label': '6M',
'step': 'month',
'stepmode': 'backward'},
{'step': 'all'}])},
'rangeslider': {'visible': True}, 'type': 'date'},
yaxis={"title":"Price (USD)"})}
return figure

@app.callback(Output('volume', 'figure'),
[Input('my-dropdown2', 'value')])
def update_graph(selected_dropdown_value):
dropdown = {"TSLA": "Tesla","AAPL": "Apple","FB": "Facebook","MSFT": "Microsoft",}
trace1 = []
for stock in selected_dropdown_value:
trace1.append(
go.Scatter(x=df[df["Stock"] == stock]["Date"],
y=df[df["Stock"] == stock]["Volume"],
mode='lines', opacity=0.7,
name=f'Volume {dropdown[stock]}', textposition='bottom center'))
traces = [trace1]
data = [val for sublist in traces for val in sublist]
figure = {'data': data,
'layout': go.Layout(colorway=["#5E0DAC", '#FF4F00', '#375CB1',
'#FF7400', '#FFF400', '#FF0056'],
height=600,
title=f"Market Volume for {', '.join(str(dropdown[i]) for i in selected_dropdown_value)} Over Time",
xaxis={"title":"Date",
'rangeselector': {'buttons': list([{'count': 1, 'label': '1M',
'step': 'month',
'stepmode': 'backward'},
{'count': 6, 'label': '6M',
'step': 'month',
'stepmode': 'backward'},
{'step': 'all'}])},
'rangeslider': {'visible': True}, 'type': 'date'},
yaxis={"title":"Transactions Volume"})}
return figure

if __name__=='__main__':
app.run_server(debug=True)
```

Now run this file and open the app in the browser:

`python3 stock_app.py`

### Summary

Stock price prediction is a machine learning project for beginners; in this tutorial we learned how to develop a stock cost prediction model and how to build an interactive dashboard for stock analysis. We implemented stock market prediction using the LSTM model. OTOH, Plotly dash python framework for building dashboards.

You give me 15 seconds I promise you best tutorials

### 41 Responses

1. faisal ashour says:

Hi, I can’t access the source code. There is an error in that regard.

• Shivam says:

Try, it should be able to access the source code.

hi this code is incorrect in section #5 .
Line 7 and 8 must be before Line 2 . in below rewrite your code.

scaler=MinMaxScaler(feature_range=(0,1))
new_dataset.index=new_dataset.Date
new_dataset.drop(“Date”,axis=1,inplace=True)
final_dataset=new_dataset.values

train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]

scaled_data=scaler.fit_transform(final_dataset)

Tanks

• Shivam Singh says:

running this code in section 5 gives us an error of:

AttributeError: ‘DataFrame’ object has no attribute ‘Date’

at line 2 of the code segment.

2. Ian FInn says:

There was an error when i tried to use my own csv file, converted the same way as your example file.

i got this output

float() argument must be a string or a number, not ‘Timestamp’

I am new to coding and really dont understand this I think it has to do with an extra step in the code?

• Shivam says:

This project is specific for the dataset provided, if you want similar experimentation on you dataset you will have to make changes in the source code accordingly.

3. Darsh Doshi says:

I am getting the same error
TypeError: float() argument must be a string or a number, not ‘Timestamp’

I have the date column in the same format as your CSV file has still got the same error.
is there any solution for this?

my Date is in the format 2018-07-20 the same as your provided CSV

4. oninag says:

I am getting the same error
TypeError: float() argument must be a string or a number, not ‘Timestamp’

• gta says:

I am getting the same error with original data. Please provide a fix

5. anti says:

closing_price = model.predict(X_test)
NameError: name ‘model’ is not defined

• Kiran says:

hi anit,
make it lstm_model

6. bt says:

Why do I get “Fail to find the dnn implementation.” and “Function call stack” with this script “lstm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2)” .

7. bts says:

I am getting the same “TypeError: float() argument must be a string or a number, not ‘Timestamp'” with the original code and original CSV. This is in reference to step #5. Please provide a fix thank you.

8. James says:

Go download the May 2020 version.. its different some. I got the same bug.. fixed it so I thought.. got past that error …and then got more errors later.. my fix was not correct. I can see the code is better that I downloaded.

9. mukul chauhan says:

after the final command how do i run this project

10. mukul chauhan says:

how to run this after thelast statement

11. Zongze Xu says:

Hi, I have met this problem below:
IndexError Traceback (most recent call last)
in
4 X_test=np.array(X_test)
5
—-> 6 X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))
7 predicted_closing_price=lstm_model.predict(X_test)
8 predicted_closing_price=scaler.inverse_transform(predicted_closing_price)

IndexError: tuple index out of range

12. Ed Dhyne says:

How do I get rid of the following error?
Traceback (most recent call last):
File “stock_app.py”, line 7, in
raise ImportError(
ImportError: Keras requires TensorFlow 2.2 or higher. Install TensorFlow via `pip install tensorflow`

• dims says:

i got the same problem, then I install portable python 3.8.6 and problem is gone.

• Engineer says:

you need to install the tensorflow package, ane the command is from tensorflow.keras.models import load_model

13. dims says:

For the time stamp issue,
you can try formatting the code same with the excel csv file. if the excel file showing d/m/y then the code may use the %d/%m/%y

Where to save the saved_model.h5 and saved_ltsm_model.h5?

14. Thiru says:

I Am Also getting same Error,can Any one Fix that Error?
TypeError: float() argument must be a string or a number, not ‘Timestamp’.

hi dear .
I am also getting error in type format . and try to fix it but not solve it.
please check it. change date to string but give another error. data sample is : [Timestamp(‘2013-12-03 00:00:00’) 10000.0]
TypeError: float() argument must be a string or a number, not ‘Timestamp’.

hi this code is incorrect in section #5 .
Line 7 and 8 must be before Line 2 . in below rewrite your code.

scaler=MinMaxScaler(feature_range=(0,1))
new_dataset.index=new_dataset.Date
new_dataset.drop(“Date”,axis=1,inplace=True)
final_dataset=new_dataset.values

train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]

scaled_data=scaler.fit_transform(final_dataset)

Tanks

hi .
this code is incorrect in section #5 .
Line 7 and 8 must be before Line 2 . in below rewrite your code.

scaler=MinMaxScaler(feature_range=(0,1))
new_dataset.index=new_dataset.Date
new_dataset.drop(“Date”,axis=1,inplace=True)
final_dataset=new_dataset.values

train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]

scaled_data=scaler.fit_transform(final_dataset)

Tanks

18. Deepak says:

Its showing error in plotly dash program
saved_model.h5 file doesnot exist how i get this file
pls help

• Vojtech says:

you need to first do the first part of the script – the stock_pred.py which compiles and saves the h5 file.

• Deepak says:

in the h5 file

Error! C:\Users\HP\Desktop\ai lab\saved_lstm_model.h5 is not UTF-8 encoded
Saving disabled
See Console for more details.

what i have to do pls help

19. Vojtech says:

Hello! First of all thanks for the great article. Now I have a few questions:
How do I extend the dataset into the future? I modded this a bit and used yahoofinance api to get data and train on them. now I’d like to get the plotly app to display like 7 days into the future… how do I do that?

• Deepak says:

Error! C:\Users\HP\Desktop\ai lab\saved_lstm_model.h5 is not UTF-8 encoded
Saving disabled.
See Console for more details.

what i have to do pls tell

20. Yashavantha says:

NameError Traceback (most recent call last)
in
81 train_data=new_dataset[:987]
82 valid_data=new_dataset[987:]
—> 83 valid_data[‘Predictions’]=prediction_closing
84 plt.plot(train_data[“Close”])
85 plt.plot(valid_data[[‘Close’,”Predictions”]])

NameError: name ‘prediction_closing’ is not defined

Please let me know the solution

• DarkSpark says:

you have not defined the variable “predicted_closing”.

The variable in the source code here is actually “prediction_closing_point”. if you were planning to change the name, change all of them. Or, correct the name

• Bett says:

How did you solve that

21. Deepak says:

Error! C:\Users\HP\Desktop\ai lab\saved_lstm_model.h5 is not UTF-8 encoded
Saving disabled.
See Console for more details.

what i have to do for this

22. d says:

Error! C:\Users\HP\Desktop\ai lab\saved_lstm_model.h5 is not UTF-8 encoded
Saving disabled.
See Console for more details.

what i have to do now
pls help

23. rahul says:

Error! C:\Users\HP\Desktop\ai lab\saved_lstm_model.h5 is not UTF-8 encoded
Saving disabled.
See Console for more details.

what i have to do pls tell

24. Ashish Kothari says:

NameError Traceback (most recent call last)
in
81 train_data=new_dataset[:987]
82 valid_data=new_dataset[987:]
—> 83 valid_data[‘Predictions’]=prediction_closing
84 plt.plot(train_data[“Close”])
85 plt.plot(valid_data[[‘Close’,”Predictions”]])

NameError: name ‘prediction_closing’ is not defined

25. Saurabh says:

InternalError: 2 root error(s) found.
(0) Internal: Blas GEMM launch failed : a.shape=(32, 50), b.shape=(50, 200), m=32, n=200, k=50
[[{{node lstm_5/while/MatMul_1}}]]
(1) Internal: Blas GEMM launch failed : a.shape=(32, 50), b.shape=(50, 200), m=32, n=200, k=50
[[{{node lstm_5/while/MatMul_1}}]]
0 successful operations.
0 derived errors ignored.

26. saurabh says:

error is showing at

—> 2 closing_price=model.predict(X_test)

27. Shivani Pal says:

I successfully compiled first script that is stock _pred.py but in second script that is stock_app.py , facing an error – SavedModel file does not exist at: saved_model.h5/{saved_model.pbtxt|saved_model.pb}