Bright and Auspicious Future of Data Science – Learn it Before you Regret

If I will tell the scope and future of data science in the World is very high and Data Scientist is the most in-demand profession today, I am sure you won’t trust. What if a great leader says so. According to Tim Berners Lee, the inventor of the World Wide Web

Data is a Precious Thing and will Last Longer than the Systems themselves.

Also, Vinod Khosla, an American Billionaire Businessman and Co-founder of Sun Microsystems declared –

In the next 10 years, Data Science and Software will do more for Medicines than all of the Biological Sciences together.

By the above two statements, it is clear that data proliferation will never end and because of that, the use of data related technologies like Data Science and Big Data is increasing day by day. Different sectors are using Data Science for their growth and benefits. All these points are enough to explain that the future of Data Science is bright. Below are some more predictions, stats, and facts that will tell you everything about the future of Data Science and Data Scientists.

future of data science

Let’s start our article with the basic introduction to Data Science and Data Scientist’s work

Introduction to Data Science

Data Science makes use of several statistical procedures. These procedures range from data transformations, data modeling, statistical operations (descriptive and inferential statistics) and machine learning modeling. Statistics is the primary asset of every Data Scientist. In order to gain predictive responses from the models, it is an essential requirement to understand the underlying patterns of the data model.  Furthermore, optimization techniques can be utilized to meet the business requirements of the user.

What do Data Scientists do?

Using various statistical tools, a Data Scientist has to develop models. With the help of these models, they help their clients in the decision-making process. Furthermore, these models support demand generation initiatives.

Analytic objectives and approaches are planned and defined by the Data Scientists who collaborate with the internal consulting team. Data Scientists also formulate work plans to provide support – programming as well as analytical to internal consulting. There is also a provision of statistical procedures that utilize Microsoft Office and SAS suite.

It is also mandatory for the aspiring data scientists to possess strong communication skills which is the most sought non-technical skill required by many jobs. Furthermore, based on the domain of expertise of the company, the specific requirements for the job will vary accordingly.

Don’t you know how much statistics you should learn to become a Data Scientist? DataFlair answer this question, check Statistics for Data Science and learn everything

Future of Data Science

Data Science is a colossal pool of multiple data operations. These data operations also involve machine learning and statistics. Machine Learning algorithms are very much dependent on data. This data is fed to our model in the form of training set and test set which is eventually used for fine-tuning our model with various algorithmic parameters. By all means, advancement in Machine Learning is the key contributor towards the future of data science.

In particular, Data Science also covers:

  • Data Integration.
  • Distributed Architecture.
  • Automating Machine learning.
  • Data Visualisation.
  • Dashboards and BI.
  • Data Engineering.
  • Deployment in production mode
  • Automated, data-driven decisions.

i. Data Science currently does not have a fixed definition due to its vast number of data operations. These data operations will only increase in the future. However, the definition of data science will become more specific and constrained as it will only incorporate essential areas that define the core data science.

Join DataFlair on Telegram

ii. In the near future, Data Scientists will have the ability to take on areas that are business-critical as well as several complex challenges. This will facilitate the businesses to make exponential leaps in the future. Companies in the present are facing a huge shortage of data scientists. However, this is set to change in the future.

In India alone, there will be an acute shortage of data science professionals until 2020. The main reason for this shortage is India is because of the varied set of skills required for data science operations. There are very few existing curricula that address the requirements of data scientists and train them. However, this is gradually changing with the introduction of Data Science degrees and bootcamps that can transform a professional from a quantitative background or a software background into a fully-fledged data scientist.

Data Science Future Career Predictions

According to IBM, there is a predicted increase in the data science job openings by 364,000 to 2,720,000. You can learn more about the demand prediction by IBM – Data Scientists Demand Prediction for 2020

We can summarize the trends leading to the future of data science in the following three points –

  • The increase of complex data science algorithms will be subsumed in packages in a magnitude making them quite easier to deploy. For example, a simple machine learning algorithms like decision trees which required huge resources in the past can now be easily deployed.
  • Large Scale Enterprises are rapidly adopting machine learning for driving their business in several ways. Automation of several tasks is one of the key future goals of the industries. As a result, they are able to prevent losses from taking place.
  • As discussed above, the prevalence of academic programs and data literacy initiatives are allowing students to get exposed to data related disciplines. This is imparting a competitive edge to the students in order to help them stay ahead of the curve.

How is Machine Learning the Driving Force behind the Future of Data Science?

Data Science is expanding due to the immense contributions made by machine learning. It has improved the data science scenario in the following ways –

1. Advanced Personalisations

Billions of users around the world are using smartphones, watches as well as other electronic devices. Customers generate such a colossal amount of data creating a huge potential for the industry to have a better understanding. Therefore, companies are able to maximize value for themselves as well as improve the understanding of their user-base thoroughly.

2. Giving Advanced Search Engine Results to the User

Machine Learning algorithms are capable of making search results much more appealing to the user. Using Google’s advanced machine learning algorithms, we can get new content based on previous search history. These results are predicted to grow much better in the future owing to immense researches that are ongoing in the field of machine learning.

3. Code Free Environments

With the help of Machine Learning Tools, softwares are evolving at a rate such that a Ph.D. is no longer required for understanding the depth of these operations. This is a result of a constant evolution wherein functions like pytorch and TensorFlow can be utilized to perform rapid prototyping of data science solutions.

4. Quantum Computing

The potential for quantum computing and data science is huge in the future. Machine Learning can also process the information much faster with its accelerated learning and advanced capabilities. Based on this, the time required for solving complex problems is significantly reduced. This will boost the health-care industry massively.

Summary

Summing up to this future of Data Science Tutorial, I can surely say Data Science will have a bright future and will last longer for decades. Hope DataFlair gave answers to all those questions related to the scope and future of data science. If there is something which we missed, do let us know through comments. Also, share your feedback with us. Now what next? Check out the trending article – Salary of a Data Scientist

Happy learning😊

5 Responses

  1. Pavan D says:

    Looking for data science course

  2. John says:

    Thanks for sharing these points, including conclusions and a brief about machine learning. Your information about Data science is very helpful. Keep sharing.

  3. Shweta Patil says:

    Hello Sir,
    I’m currently working as a Statistician and have knowledge of R, SPSS and SQL and i want job change as a Data Scientist but dont have a knowledge of Python or C programming. Is it possible for me to do such change without Python?

    • DataFlair Team says:

      Hello Shweta,
      Yes, you can be a Data Scientist with the knowledge of R, SPSS, and SQL. R and Python are two vastly used programming languages for Data Science. Beginners prefer Python for its simple syntax and easy to learn capabilities.
      You can check our “R vs Python for Data Science” Blog from the left sidebar and get more details.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.