Pandas Basic Functionality – 4 Major Functions Used by Data Scientists

Get Job-Ready: Data Analysis using Python with 70+ Projects Start Now!!

Python Pandas is popular because of basic functionalities. The panda’s library has many essential basic functions and functionalities which make your everyday work a lot easier. The Pandas basic functionality is highly recommended for a beginner to master in pandas.

Pandas Basic Functionality

Before starting Pandas basic functionality, you must learn to import libraries

>>> import numpy as np
>>> import pandas as pd

Here, we will create the 4 main data structures we work within Pandas.

  • Index 
>>>dataflair_index =pd.date_range('1/1/2000', periods=8)
  • Series
>>>dataflair_s1 = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
  • DataFrame
>>>dataflair_df1 = pd.DataFrame(np.random.randn(8, 3), index=dataflair_index,columns=['A', 'B', 'C'])
  • Panel
>>> dataflair_wp1 = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],major_axis=pd.date_range('1/1/2000', periods=5),minor_axis=['A', 'B', 'C', 'D'])

Output-

Importing libraries in pandas

Before we dive into Pandas Basic functionalities, let’s discover the File Hierarchy in Pandas

Now we can start with the basic functionalities of Pandas.

  1. head() function
  2. tail() function
  3. Attributes
  4. Flexible Binary Operations

To view the starting or the ending of a lengthy series, we can use the head() or tail() function.

1. head() function

Let us create a series with 1000 random values

>>> dataflair = pd.Series(np.random.randn(1000))

Using head() function-

>>> dataflair.head()

Output-

Pandas Head functions

2. tail() function

Now, we use the tail function and set the number of elements to 3:

>>> dataflair.tail(3)

Output-

Applying Pandas tail function

What makes Python Pandas unique from other libraries?

3. Attributes

Attributes play a major role in the basic functionality of pandas which helps data scientist for fast analyzing, cleaning, and preparation of data. Pandas objects possess a number of attributes which enable you to access the metadata.

Shape: It gives the axis dimensions

Axis labels: 

  1. Series: index (only one axis)
  2. DataFrame: index (rows) and columns
  3. Panel: major axis, minor axis and items
  • You can safely assign these attributes.
>>> dataflair_df1[:2]

Output-

attribute series in Pandas

  • This prints the last two values for the DataFrame
>>> dataflair_df1.columns = [x.lower() for x in dataflair_df1.columns]
>>> dataflair_df1

Output-

Pandas Dataframes print last two values

  • Using this function we change the uppercase column names to lowercase.

If you have to get the actual data which is inside a Pandas data structure, you only need to use the values property.

>>> dataflair_s1.values

Output-

Changing upper column name

Input-

>>> dataflair_df1.values

Output-

Upper to lower column name in pandas

 

>>> dataflair_wp1.values

Output-

Pandas WP value withexample

4. Flexible Binary Operations

In the binary operations between data structures in pandas, there are two vital points of interest:

  • Broadcasting behavior between lower dimensional objects and higher dimensional objects
  • Missing data while computing

We will learn how to manage these two issues independently. They can be dealt with simultaneously though.

4.1 Broadcasting Behaviour

For broadcasting behavior, the Series input is primary. You can match the index or columns by using the axis() keyword.

>>> dataflair_df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c']),'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd'])})
>>> dataflair_df

Output-

Using Axis keywords in Pandas

Input-

>>> row = dataflair_df.iloc[1]
>>> column = dataflair_df['two']
>>> dataflair_df.sub(row, axis='columns')

Output-

Pandas iloc function with example

Pandas are popular in Data Science but Pandas has different applications in other sectors too.

>>> dataflair_df.sub(column, axis='index')

Output-

Column wise index in pandas

Input-

>>> dataflair_df.sub(column, axis=0)

Output-

How to index pandas on zero axis

4.1.1 Multi-indexed DataFrames level

Using a series, you can align a multi-indexed DataFrame’s level.

>>> dataflair_dfmi = dataflair_df.copy()
>>> dataflair_dfmi.index = pd.MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')],names=['first','second'])
>>> dataflair_dfmi.sub(column, axis=0, level='second')

Output-

Pandas Multi-indexed DataFrame

In a Panel, the matching or broadcasting behavior is a little difficult. Hence, the arithmetic methods are used instead, giving you an option to specify the axis of broadcast.

>>> major_mean = dataflair_wp1.mean(axis='major')
>>> major_mean

Output-

pandas multi-indexed DataFrame with major axis

>>> dataflair_wp1.sub(major_mean, axis='major')

Output-

multi indexed on major means and axis in pandas

Series and Index support the divmod() built-in function. It takes the floor division along with the modulo operation at the same time and returns a two-tuple of the same type. It returns it as the left-hand side.

Do you know the benefits offered by Python Pandas?

For series

>>> dataflair_s = pd.Series(np.arange(10))
>>> dataflair_s

Output-

Example of divmod built-in functions in pandas
Input – 

>>> div, rem = divmod(dataflair_s, 3) #Dividing by 3
>>> div

0  0

1  0

2  0

3  1

4  1

5  1

6  2

7  2

8  2

9  3

>>> rem

Result of Pandas Divmod built in fucntion

For index

>>> dataflair_idx = pd.Index(np.arange(10))
>>> dataflair_idx

Indexing in Pandas Series

>>> div, rem = divmod(dataflair_idx, 3)
>>> div

Int64Index([0,0,0,1,1,1,2,2,2,3], dtype=’int64′)

>>> rem

rem-in-Pandas using divmod()

We can do divmod() elementwise as well.

div, rem = divmod(dataflair_s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6]) #First element will be divided by 2, second element by 3, third by 3 and so on

>>> div, rem = divmod(dataflair_s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6])
>>> div

Example of Divmod function

>>> rem

rem in pandas series

4.2 Missing Values in pandas

In DataFrame and Series, the arithmetic function gives you an option of inputting a fill_value, which basically substitutes a value whenever a value is missing from a location. When you add two DataFrame objects, you can treat NaN as 0. However, if both DataFrames are missing that value the result will be NaN. You can still replace it with some other value by using the fillna function later.

>>> dataflair_df

Find missing values in Pandas

>>> dataflair_df2 = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c']),'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd'])})
>>> dataflair_df2

Get a missing values in Pandas

>>> dataflair_df + dataflair_df2

Example of Missing values in Pandas

Input

>>> dataflair_df.add(dataflair_df2,fill_value=0) #does the same thing as ‘+’ operator

Input for missing values

Summary

In conclusion, we would like to say that basic functionality encompasses a lot of Pandas, but these are the main functions along with some flexible comparisons and Boolean reductions.

I recommend you 7 best Python Pandas books to get more in-depth knowledge of Pandas

If you have any query, feel free to comment below.

You give me 15 seconds I promise you best tutorials
Please share your happy experience on Google

courses

DataFlair Team

DataFlair Team creates expert-level guides on programming, Java, Python, C++, DSA, AI, ML, data Science, Android, Flutter, MERN, Web Development, and technology. Our goal is to empower learners with easy-to-understand content. Explore our resources for career growth and practical learning.

Leave a Reply

Your email address will not be published. Required fields are marked *